Министерство образования и молодежной политики Свердловской области Государственное автономное профессиональное образовательное учреждение Свердловской области «Сухоложский многопрофильный техникум»

ФОНД

оценочных средств для промежуточной аттестации по профессиональному модулю ПМ.03. Изготовление различных деталей на фрезерном станке

СОДЕРЖАНИЕ:

1. Паспорт комплекта контрольно-оценочных средств Область применения Объем учебной дисциплины и виды учебной работы Результаты освоения учебной дисциплины

2. Формы контроля

Контрольно-оценочные средствадляпроведениятекущего контроля Контрольно-оценочные средства для проведения промежуточной аттестации

3. Комплект материалов для оценки освоенных умений и усвоенных знаний (ОК и ПК)

Тест

Практические работы

1. Паспорт комплекта контрольно-оценочных средств Область применения

Контрольно-оценочные средства (далее - КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу ПМ.03 Изготовление различных деталей на фрезерном станке

Пакет КОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации.

ПК 03.1. Осуществлять подготовку,	Навыки:
наладку и обслуживание рабочего места	выполнения подготовительных работ и обслуживании рабочего места
для работы на фрезерных станках	фрезеровщика
	Умения:
	осуществлять подготовку к работе и обслуживание рабочего места
	фрезеровщика в соответствии с техническим регламентом, с требованиями
	охраны труда, производственной санитарии, пожарной безопасности и
	электробезопасности
	Знания:
	устройство и принципы действия универсальных фрезерных станков,
	правила подготовки к работе и содержание рабочих мест фрезеровщика,
	технический регламент, требования охраны труда, производственной
HI(02.2 O	санитарии, пожарной безопасности и электробезопасности
ПК03.2. Осуществлять подготовку к	Навыки:
использованию инструмента и	подготовки к использованию инструмента и оснастки для работы на
оснастки для работы на фрезерных	фрезерных станках в соответствии с полученным заданием
станках в соответствии с заданием	Умения:
	выбирать и подготавливать к работе универсальные, специальные приспособления, режущий и контрольно-измерительный инструмент и
	оснастку
	Знания:
	конструктивных особенностей, правил управления, наладки и проверки на
	точность фрезерных станков различных типов;
	устройства, правила применения, проверки на точность универсальных и
	специальных приспособлений, режущего инструмента, контрольно-
	измерительных инструментов и оснастки
ПК 03.3. Определять	Навыки:
последовательность и оптимальные	определения последовательности и оптимального режима обработки
режимы обработки различных деталей	различных изделий на фрезерных станках в соответствии с заданием
на фрезерных станках в соответствии с	Умения:
заданием	устанавливать оптимальный режим фрезерной обработки в
	соответствии с требованиями чертежа
	Знания:
	основы теории резания металлов,
	правила определения режимов резания по справочникам и паспорту станка
ПК 03.4. Осуществлять технологический	Навыки:
процесс обработки деталей на	осуществления технологического процесса обработки и доводки изделий на
фрезерных станках с соблюдением	фрезерных станках с соблюдением требований к качеству, в соответствии с
требований к качеству, в соответствии с	заданием и технической документацией
заданием и с технической	Умения:
документацией	осуществлять фрезерование заготовок простых деталей с точностью
	размеров по 12–14-му квалитету;
	по 10-му, 11-му квалитету; по 7–9-му квалитету;
	осуществлять фрезерование заготовок сложных деталей с точностью размеров по 12–14-му квалитету;

по 10-му, 11-му квалитету;
осуществлять фрезерование зубьев деталей зубчатых передач по 10-й, 11-й
степени точности; зубчатых передач 9-й степени точности;
осуществлять контроль качества обработки простых деталей с точностью
размеров по 12–14-му квалитету;
по 10-му, 11-му квалитету, сложных деталей – по 12–14-му квалитету и
деталей зубчатых передач 10-й, 11-й степени точности; по 7–9-му
квалитету, сложных деталей – по 10-му, 11-му квалитету и деталей
зубчатых передач 9-й степени точности
Знания:

технология выполнения фрезерных работ, правила проведения и технологии

2. Комплект материалов для оценки освоенных умений и усвоенных знаний (ОК и ПК)

проверки качества выполненных работ

Вариант1

Задание:выберитеправильныйответ.

1. Чтоназываетсяглубинойрезания?

- а)Толщинаслояметалла, срезаемого заодинрабочийходрезца; б)
- Припуск, снимаемый резцомзаодинили несколькопроходов;
- в)Слой металла, снимаемый резцом с заготовки.

2. Сверлослужит:

- а) длячистовой обработки отверстия;
- б) дляполучения отверстия в сплошномматериале;
- в) для обработкиотверстий послеотливкии ковки.

3. Чемусоответствует подачапринарезаниирезьбы:

- а)шагунарезаемойрезьбы;
- б) диаметруподнарезаниерезьбы;
- в)длине резьбы;

4. Укажитеформулуоборотовшпинделя:

$$\begin{array}{c}
N = P^{V} \\
\hline
\mathbf{a}) & 6012
\end{array};$$

$$V = \frac{\pi Dn}{1000}$$

$$n = \frac{100V0}{\pi D}$$

5. Укажите, какимспособомзакрепляется длинная заготовка натокарномстанке:

- а)втрехкулачковомпатроне;
- б)втрехкулачковомпатронесподжатиемзаднимцентром; в)с

помощью оправки.

6. Суппорттокарногостанка состоитиз:

- а) Коробкискоростей, шпинделя, патрона;
- б) Фартука, салазок, резцедержателя;
- в) Корпуса,пиноли,плиты.

7. Какотличить черновой и чистовой метчики в комплекте издвух метчиков?

- а)повидухвостовой части;
- б)понаклонустружечнойканавки;
- в)по виду режущей части.

8. Определите, каким способом можноу странить биение просверленного отверстия:

- а)зенкерованием;
- б)развертыванием;
- в) растачиванием.

9. Засчетчегопроисходитнавинчиваниеплашкипринарезаниирезьбы?

- а)засчетперемещениязаднейбабкисуппорта; б) за
- счет самозатягивания плашки;
- в) засчетперемещения пинолизадней бабки.

10. Чтопонимаетсяподосновнымиразмерамистанка:

- 1) диаметробрабатываемойдетали;
- 2) габаритныеразмерыстанка;
- 3) высотацентрови расстояниемеждуцентрами;

11. Вкакихслучаяхприменяютзенкерование:

а)для получения отверстий сточностью до 0,1- 0,2 мм и чистотой обработки до 3 класса шероховатости;

в)
для получения отверстий сточностью до 0,01 мм и чистотой обработки до 8 шероховатости;

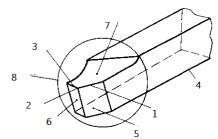
класса

12. Какуюточностьишероховатостьповерхностиможнополучить сверлением?

- а)5класс точности,3шероховатости;
- б)3класс точности,5шероховатости;
- в)4класс точности,2шероховатости.

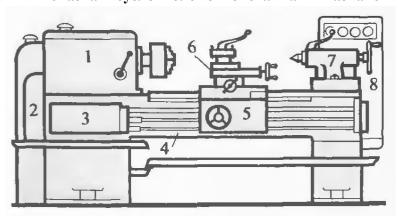
13. Машинныеразверткиподразделяютсяна:

- а)клиновые,шпоночные,вихревые;
- б)хвостовые,насадные,со вставныминожами,регулирываемые;
- в)ленточные, шнековые, ружейные.


14. Укажитесредиперечисленных резьбу, обозначенную начертеже «М10×1,5»:

- а)многозаходная резьба диаметром 10 мм и ходом резьбы 1,5;
- б)метрическаярезьбадиаметром 10ммимелким шагом 1,5мм;
- в)метрическая резьбадиаметром10ммикрупнымшагом1,5мм;

15. Выберитеобозначениерезьбысмелкимшагом, еслирезьбанарезананаболте:


- a)M16-6g
- б)M20x1,5-7H
- B)M18x1,5-8g

16. Напишитеназваниенназначениеэлементов резца:

№ на	Названиеэлементоврезца	№ на	Названиеэлементоврезца
рисунке		рисунке	
1.		5.	
2.		6.	
3.		7.	
4.		8.	

17. Напишитеназваниеузловиэлементовстанкаиихназначение

	№позиции	Название	элементов	узлов	И	назначение	узлов	И	элементов
--	----------	----------	-----------	-------	---	------------	-------	---	-----------

нарисунке	элементов станка	станка
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		

Решитезадачу заполнивтаблицу

Задача 1. Определите глубину резания при обработке детали, если диаметр заготовки равен 54 мм, а диаметр изделия 46 мм. Обработкапроизводится за 2 рабочих хода.

Задача 2. Определите скорость резания и подачу, если диаметр обрабатываемой заготовки равен 80мм, оборотышпинделя - 500об/мин, за2мин резец проходитрасстояние200 мм. Обработка производиться за два рабочих хода.

No	Расчетная	Единицы	результат
	формула	измерения	
1.			
2.			

Задание:выберитеправильныйответ.

1. Коробкаподач служит:

- а)Длярегулированияскоростивращения заготовки;
- б)Длярегулированияскоростиперемещенияинструментов;
- в)Для регулирования скорости вращения инструментов.

2. Впереднейбабкеразмещаются:

- а)пиноль;
- б)фартук;
- в)коробкаскоростей.

3. Крежимамрезания относятся:

- а)глубина резания, подача,
- скорость;б)припуск,подача,оборотышпи

нделя;

в)глубинарезания,силарезания,мощностьрезания.

4. Какиевидыстружкиобразуютсяприрезании:

- а)скалывания, надлома, сливная;
- б)гладкая лента, ступенчатая;
- в)фасонная, сливная, надлома.

5. Укажитеформулускоростирезания:

a)
$$n = \frac{1000V}{\pi D}$$
; $V = \frac{\pi Dn}{1000}$; $h = L \frac{D - d}{2\ell}$

6. Укажитеглавноедвижениерезания:

- а)Перемещениеинструмента, закрепленноговрезцедержателе;
- б)Перемещение инструмента, закрепленного в задней бабке;
- в)Вращательноедвижение заготовки.

7. Каккрепятсясверласконическим хвостовиком?

- а) вспециальнойоправкеприпомощикулачков;
- б) впинолизаднейбабкиприпомощисверлильного патрона; в) в пиноли задней бабки;

8. Изкакихчастей состоитметчик?

- а)режущаячасть, хвостовик, калибрующая часть;
- б)режущаячасть, калибрующаячасть, шейка, хвостовик;
- в)направляющийконус, режущая часть, калибрующая часть, обратный конус, шейка, хвостовик.

9. Главнаярежущаякромкаобразуетсяпересечением:

- а)Передней и вспомогательнойзадней поверхностью;
- б)Главнойзаднейповерхностьюивспомогательнойзаднейповерхностью;
- в)Передней и главной задней поверхностями.

10. Какимипараметрамихарактеризуетсярезьба?

- а)наружнымдиаметром,внутреннимдиаметром,среднимдиаметром,шагом,угломпрофиля;
- б) диаметромзаготовки, диаметромдетали, длинойрезьбы, числомзаходов резьбы;
- в)наружнымдиаметром,внутреннимдиаметром,угломподъема,главным угломрезьбы.

11. Вкакихслучаяхприменяютсверление:

а)дляполучения отверстийс точностью до 0,1-0,2 ммичистотой до 3 класса шероховатости;

б)дляполученияотверстийс точностьюдо0,05ммичистотой до5класса

шероховатости;

в)дляполучения отверстийс точностью до 0,01 ммичистотой до 8 класса шероховатости;

12. Какаячистотаповерхностидостигаетсяпричистовомрастачивании?

а)Ra12,5-25мкм;

б) Ra6, 3-12, 5 мкм;

в)Ra1,6-3,2мкм;

13. Укажитепреимуществозенкерованияпередрастачиванием:

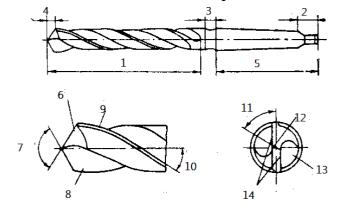
- а)более высокаяпроизводительность;
- б)устраняетбиениепросверленногоотверстия;
- в)позволяетполучитьболеевысокуючистотуповерхности.

14. Укажитесредиперечисленных резьбу, обозначенную начертеже «М10»:

- а)многозаходнаярезьбадиаметром10мм;
- б)метрическая резьба диаметром 10

мм;в)модульная резьба диаметром 10 мм.

15. Выберитеобозначениерезьбысмелкимшагом, еслирезьбанарезанавгайке:


- a. M12-6g
- b. M16x1,5-7H
- c. M14x0,5-8g

16. Напишитеназваниеиназначениерезцов:

№ на	название	И	назначение	№ на	названиеиназначениерезцов
рисунке	резцов			рисунке	
1.				5.	
2.				6.	
3.				7.	
4.					

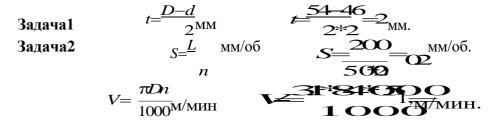
17. Напишитеназванияэлементовсверла

№ на	названия	элементов	№ на	названия	элементов
рисунке	сверла		рисунке	сверла	
1.			8.		
2.			9.		
3.			10.		
4.			11.		
5.			12.		
6.			13.		
7.			14.		

Решитезадачу заполнивтаблицу

Задача 1. Определите подачу, еслипри обработке заготовки с оборотами шпинделя 800 об/мин резецза 2 мин.проходит расстояние400 мм.

Задача 2. Определите глубину резания и обороты шпинделя, если диаметр обрабатываемой заготовки равен 25 мм, диаметр детали - 20 мм, скорость резания - 80 м/мин. Обработка производиться за один рабочий ход.


No	Расчетная	Единицы	результат
	формула	измерения	
1.			
2.			

Ключк тесту

Вариант1

1	a	9	б
2	б	10	В
3	a	11	б
4	В	12	a
5	б	13	б
6	б	14	б
7	В	15	В
8	В		

- 16 1-главнаярежущаякромка
 - 2- вершина
 - 3- вспомогательнаярежущаякромка
 - 4- державка
 - 5- главнаязадняяповерхность
 - 6- вспомогательнаязадняяповерхность
 - 7-передняяповерхность
 - 8- режущаяголовка
- 17 1-передняя бабка
 - 2- гитара
 - 3- коробкаподач
 - 4- станина
 - 5- суппорт
 - 6-салазки
 - 7-задняябабка
 - 8-электрошкаф

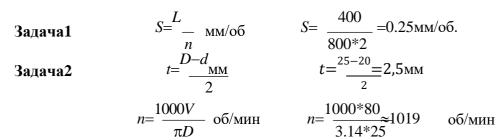
Критерииоценки:

- оценка«отлично» выставляется студенту, если вответах допущено неболее 1 ошибок.
- оценка«хорошо» выставляется студенту, если вответах допущено неболее 3 ошибок.
- оценка «удовлетворительно» выставляется студенту, если вответах допущено не более 6 ошибок.
- оценка«неудовлетворительно» выставляется студенту, если вответах допущено 6 и более ошибок.

Ключк тесту

Вариант2

ЧастьА


1	б	9	В
2	В	10	a
3	a	11	a
4	a	12	В
5	б	13	a
6	В	14	б
7	В	15	б
8	a		

16 1-расточнойканавочный

- 2- расточной для сквозных отверстий
- 3- проходной упорный
- 4- проходнойотогнутый
- 5- канавочный
- 6- резьбовой
- 7-подрезной

17

1 -рабочаячасть	8 –передняя поверхность
-----------------	-------------------------

Критерииоценки:

- оценка«отлично» выставляется студенту, если вответах допущено неболее 1 ошибок.
- оценка«хорошо» выставляется студенту, если вответах допущено неболее 3 ошибок.
- оценка «удовлетворительно» выставляется студенту, если вответах допущено не более 6 ошибок.
- оценка «неудовлетворительно» выставляется студенту, если вответах допущено 6 и более опибок.

Практическиеработы

№	Название практических работ
1	Практическаяработа№2Тема:Подготовка кработе на фрезерном оборудовании.
2	Практическаяработа№4Тема:Установка и настройка режущего инструмента на
	Фрезерном оборудовании.

Раздел 2.3. Основные приемы управления станками

Тема:Подготовка к работе на фрезерном оборудовании.

Практическаяработа№2

Учебнаяцель:

- 1. Уметьсоблюдатьтехникубезопасностиприработесфрезерным оборудованием.
- 2. Знатьорганизациюрабочегоместафрезеровщика.
- 3. Научитьсяподготавливатьфрезерноеоборудованиекработе.

Образовательные результаты:

Студент должен

уметь:

- ✓ обеспечиватьбезопаснуюработу
- ✓ применятьнапрактикеправилаохранытруда
- ✓ читатьконструкторскую итехническую документацию
- ✓ составлятьтехнологическийпроцессизготовления детали
- ✓ Выполнятьуборкустружки

знать:

- ✓ стандарты ЕСКДиЕСТД
- ✓ основныеметодыобработкиметаллов
- ✓ видыдеталейиихповерхностей
- ✓ видырежущегоинструментаиобласть ихприменения
- ✓ правилауправления обслуживаемым оборудованием
- ✓ техникубезопасности работынастанках

Задачи практической работы:

- 1. Изучить технику безопасности при работе на фрезерном оборудовании.
- 2. Изучить организацию рабочего места фрезеровщика.

- 3. Изучение фрезерного оборудования в работе.
- 4. Сделать вывод о проделанной работе.

Обеспеченностьзанятия:

1. Учебно-методическаялитература:

- Лебедев А.В., Мнацаканян В.У., Погодин П.В. Технология машиностроения М.: Издательский центр Академия, 2010. 528 с.
- Моряков О.С. Оборудование машиностроительного производства: учебник для студ. учреждений сред.проф.образования/ -3-е изд., стер.- М.: Издательский центр «Академия», 2014. 256 с.
- Черпаков Б.И. Металлорежущие станки: учебник для нач. проф. образования / -4-е изд.,стер.- М.: Издательский центр «Академия», 2010. 368 с.
- Черпаков Б.И. Технологические оборудование машиностроительного производства: учебник длястуд.учрежденийсред.проф.образования/-6-еизд.,стер.-М.:Издательскийцентр «Академия»,2015. -448 с.
- Холодкова А.Г. Общиеосновы технологииметаллообработкииработнаметаллорежущих станках: учебник для студ. учреждений сред.проф.образования / -2-е изд., стер.- М.: Издательский центр «Академия», 2015. 256 с.
- Л.И. Вереина 2-е изд., стер. Выполнение работ по профессии «Фрезеровщик». Учеб. пособиедлястуд.учрежденийсред.проф.ОбразованияМ:Издательскийцентр «Академия», 2016.—160с.

2. Техническиесредстваобучения:

- ✓ Наборизмерительногоинструментадлястанков шт.
 ✓ Индикаторнаяголовкачасовоготипасмагнитнымштативом шт.
- ✓ Индикаторнаяголовкачасовоготипасмагнитнымштативом
 ✓ Комплектуниверсальногоизмерительногоинструмента
 шт. 1
 - включающий:шт. 1
- ✓ Штангенциркуль150мм,0,05мм шт.
- ✓ Микрометр 0 -25мм,0,01мм шт. 1
- У Угольник30мм шт. 1
- ✓ Линейка150мм шт.

1. Программноеобеспечение:

ПрограммноеобеспечениеМАСН3, русифицированнаяверсия шт.1

2. Лабораторноеоборудованиеминструменты:

- Портальный фрезерный станок с ЧПУ Формат АЗ (Рабочая поверхность стола 500 мм х 370 мм.) шт. 2
- Базис3-хкоординатный,портальный,вариантД2 шт. 1
- Шпиндельнаяголовка(0,4кВт)шт.1
- БлокуправленияБУ-04 шт. 1
- Кронштейнпереходныйна43мм шт. 1
- Оснасткаиинструмент(прижимы, оправки, ключи)шт. 1
- 3. Образцыдокументовплакатыпотехникебезопасности.
- 4. РаздаточныематериалыПрактическаяработа№2.
- 5. Карандашпростой, ластик, шариковаяручка синяя паста.

Краткие теоретические и учебно-методические материалы потеме практической работы.

Организация рабочего места фрезеровщика

Основным оборудованием рабочего места фрезеровщика является фрезерный станок или группа станков с постоянными комплектами принадлежностей к ним. Оргоснастка на рабочем месте размещается в зависимости от расположения фрезерного. Около станка должна находиться деревянная подножная решетка. Большинство фрезерных станков имеют дублирующие органы управления, поэтому решетка должна быть удобной для перемещения рабочего вдоль фасада станка (справа и слева). При групповом расположении фрезерных станков инструментальные шкафы должны быть вынесены за пределы рабочих мест. В этом случае на рабочем месте устанавливают стеллаж-этажерку для подготовленных к работе инструментов, оснастки и деталей. Такие приспособления, как делительные головки, поворотные столы, пневмотиски, следует хранить на стеллажах и подставках.

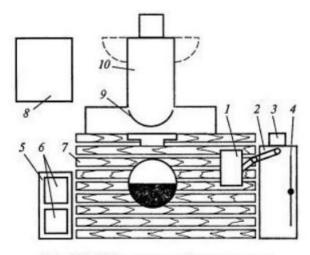


Рис. 5.5. Рабочее место фрезеровщика:

1 — планшет для инструмента; 2 — инструментальная тумбочка; 3 — урна для мусора; 4 — кронштейн для чертежей; 5 — приемный стол; 6 — тара; 7 — решетка; 8 — стеллаж; 9 — ограждение; 10 — станок

Для предотвращения поломки фрез и порчи поверхности стола станка тяжелые фрезы предварительно ставят на специальную деревянную подставку (в крайнем случае на кусок толстой доски) на стол станка. Для центрирования фрезы со шпинделем ее перемещают вместе с подставкой по поверхности стола или без подставки, с помощью стола и консоли станка. Затем ручным перемещением гильзы или ползуна шпинделя (на горизонтальных станках -- перемещениями стола) конус оправки фрезы вводят в конусное отверстие шпинделя и закрепляют фрезу ручным завинчиванием (в резьбовое отверстие оправки) или механизированным зажимом.

Набор инструментов и оснастки на рабочем месте фрезеровщика определяется типом станка, номенклатурой обрабатываемых деталей, технологическим процессом и соблюдением требования о наличии на рабочем месте только самых необходимых, постоянно используемых приспособлений и инструментов.

Обработанные детали по мере их накопления следует увозить с рабочего места. Пол должен быть ровным, без выбоин и неровностей, на нем не должно быть потеков и капельмасла или СОЖ. Следует своевременно очищать станки от стружки. Уровень шума на рабочем месте должен быть не выше 70 дБ. Оптимальная освещенность -- 200 лк. Для защиты глаз от стружки необходимо применять защитные очки, индивидуальные щитки и специальныекожухи для фрез, устанавливаемых на станке.

Охрана труда приработенафрезерномстанке

При фрезеровании можно травмироваться при неправильной установке детали и фрезы, неправильномуправлениистанкомвовремяработы,попаданииотлетаемойстружкинаруки, лицо и глаза, затягивании пальцев под фрезу и т.д.

1. Доначалаработы

- ✓ приведивпорядокрабочую одежду (застегни обшлагарукавов, одень головной убор);
- ✓ проверьналичиерабочегоирежущегоинструментаиихисправность;
- ✓ проверьналичиезащитного экранаизаземления;
- ✓ проверьисправностьстанканахолостомходу.

2. Вовремяработы

- ✓ непользуйсянеисправныминструментомитупойфрезой;
- ✓ неубирайизлишкистружекрукамииливетошью, несдувайих, а удаляйстружкущеткойсметкой:
- ✓ неотходиотработающегостанка, незанимайся посторонними делами;
- ✓ непроизводизамеробрабатываемой деталипривращающейсяфрезе;
- ✓ неподводи пальцырукблизкоквращающейсяфрезе;
- ✓ неменяйскоростивращенияшпинделябез разрешения учителя.

3. Поокончании работы

- ✓ выключистанокотобщейсиловойсети;
- ✓ снимиобрабатываемуюдетальифрезу, уберифрезуирабочийинструментнасвое предназначенное место;
- уберистанокщеткой-сметкойиливетошью;
- ✓ смажьмашинныммасломвсенаправляющиестанка;
- ✓ уберирабочее место.

Порядокдействийприподготовкекработефрезерногооборудования

Состав операций, выполняемых при наладке, зависит от типа фрезерного станка, профиля и формы обрабатываемой детали.

Подготовка станка к работе включает в себя три основных этапа: проверку исправности станка; наладку станка; размерную настройку станка. Проверку исправности станка начинают с проверки надежности его заземления, состояния электроаппаратуры и изоляции проводов, ограждений и других устройств, обеспечивающих безопасную работу на станке.

Далее необходимо: а) проверить наличие смазки в подшипниковых опорах шпинделя, в направляющих и других трущихся сопряжениях; б) проверить отсутствие утечек смазки через уплотнения; в) проверить от руки вращение шпинделя в обоих направлениях, следя чтобы вращение было плавным, без заеданий и люфтов; г) проверить ременную передачу — целостность ремня, отсутствие разлохмачивания боковин, масляных пятен, загрязнений; проконтролировать натяжение ремня; д) проконтролировать плавность перемещения суппортов, столов, дополнительных опор, ограждений инструмента по всей длине хода в обоих направлениях (на отсутствие рывков, заеданий и т. д.); е) проверить надежность устройств стопорения: зафиксировав суппорт в определенном положении по высоте винтом и вращая маховик перемещения суппорта, попытаться вывести суппорт из фиксированного положения; при этом суппорт должен оставаться неподвижным. После получения положительного результата по всем пунктам проверяют исправность станка на холостом ходу в такой последовательности.

Включают кнопкой «пуск» двигатель механизма привода шпинделя, предварительно застопорив суппорт на высоте. При наличии ряда скоростей вращения шпинделя проверку начинают с низшей скорости. Шпиндель должен вращаться в заданном направлении без значительного шума, вибраций, издавая ровный монотонный звук.

Проверяют работоспособность системы торможения шпинделя, которая включается автоматически при выключении механизма резания (при нажатии на кнопку «стоп») и обеспечивает полную остановку вращения шпинделя в течение примерно шести секунд.

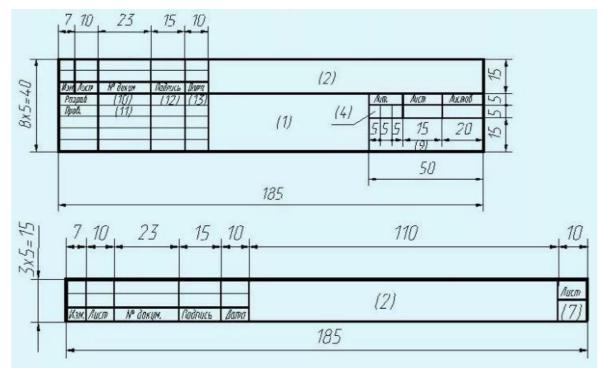
Проверяют действие электрических блокировок при снятых ограждениях, открытом злектрошкафе, введенном стопоре (при нажатии на кнопку «пуск» станок не должен включаться); не должно происходить самовключение станка после обесточивания.

Следующий этап подготовки станка к работе — наладка, заключающаяся в регулировании функциональных узлов станка для обработки конкретной партии деталей в соответствии с предъявляемыми к ним требованиям. Для выполнения операций по наладке станка необходимо знать: а) размеры и форму обрабатываемой детали; б) припуски на обработку; в) породу и влажность обрабатываемого материала; г) режим обработки (скорость резания и подачи). Содержание наладки зависит от конструктивных особенностей станка, его принципиальных схем, наличия тех или иных функциональных механизмов.

В процессе наладки станка устанавливают частоты вращения инструмента, скорость подачи заготовки, крепят режущий инструмент, ограждения, упоры, и т. д.

После закрепления режущего инструмента приступают к размерной настройке, заключающейся в установлении точных расстояний между режущим инструментом и базирующими элементами станка (направляющими линейками, шаблонами, упорами», опорными кольцами и т. д.) с целью обеспечения заданной точности размеров и формы обрабатываемых деталей.

Вопросыдлязакреплениятеоретическогоматериала к практическому занятию:


- 1. Перечислитеосновныеправилабезопасностиприработена фрезерном оборудовании.
- 2. Чтопонимаетсяподрабочимместомфрезеровщика?
- 3. Какиетравмирующиефакторыимеютместоприработенафрезерном станке?
- 4. Какоеотрицательноевлияниевибрацийприфрезерованииработыикаковы причины их появления?
- 5. Какогоназначениеустройстваограждениязонырезанияна металлорежущем станке?
- 6. Привыполнении, каких видовработ, нужноот ключить станок?

Инструкцияповыполнениюпрактическойработы

- 1. Изучитьтехникубезопасностиприработесфрезернымоборудованием.
- 2. Изучитьорганизациюрабочегоместа фрезеровщика.
- 3. Изучить порядок действий приподготов кекработе фрезерного оборудования.
- 4. Результатыработыотразитьвотчетепопрактическойработе№2
- 5. Сделатьвыводопроделаннойработе.

Формаотчетапопрактическойработе

Практическую работу оформить на листах формата A4 в соответствии с правилами ЕСКД, обязательно применить основную надпись для текстовых документов. На первом листе высота основной надписи 40мм., на последующих 15мм. Дляудобствазащитыможноприготовить презентацию. Применяйте актуальные изображения, рисунки, фотографии.

Критерииоценкиработы:

- оценка«отлично» выставляется студенту, еслипрактическая работавы полнена в полном объеме, оформлена в соответствии с требованиями формы отчета, ответы на вопросы исчерпывающие.
- оценка«хорошо» выставляется студенту, еслипрактическая работавы полненав полном объеме, оформлена в соответствии с требованиями формы отчета, ответы на вопросы не полные.
- оценка «удовлетворительно» выставляется студенту, если практическая работа выполненаневполномобъеме, оформленавсоответствиистребованиями формы отчета с недочетами, ответы на вопросы не полные.
- оценка«неудовлетворительно»выставляетсястуденту, студентневыполнил практическую работу.

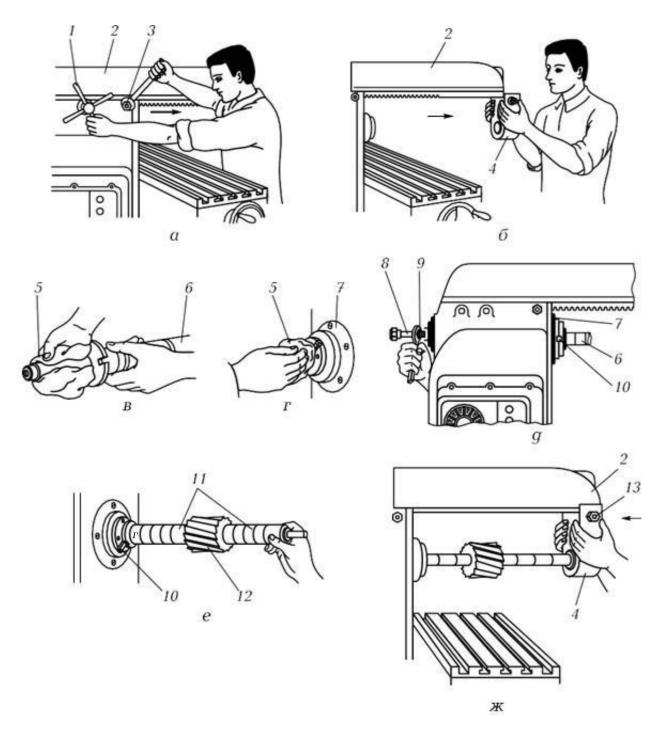
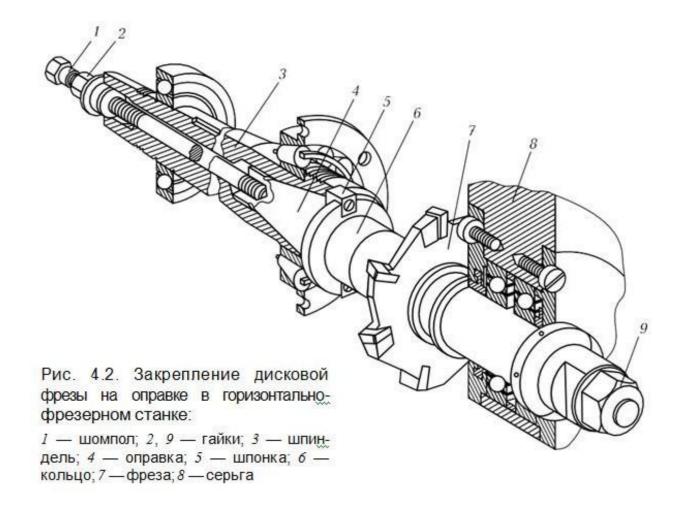



Рис.4.1.Последовательностьустановкиизакрепленияцилиндрическойфрезы на горизонтально-фрезерном станке:

a —установканеобходимоговылетахобота; δ —демонтажсерьги; ϵ очисткако-нусафрезернойоправкиветошью; ϵ —протираниеконусного отверстияшпинделя; δ —установкаоправки; ϵ —установкафрезы; κ — установкасерьги; ℓ —штурвал; ℓ —хобот; ℓ —гайки; ℓ —серьга; ℓ —ветошь; ℓ —оправка; ℓ —шпиндель; ℓ —шомпол; ℓ —шпонка; ℓ —кольца; ℓ —фреза.

На**вертикально-фрезерных** станках используются концевые и насадные фрезы, которые устанавливают в шпиндель станка с помощью оправки.

Способ закрепления концевых фрез зависит от формы их хвостовой части. Концевыефрезыс коническим хвостовиком крепятвконическомотверстии шпинделянепосредственноиличерез переходныевтулки, используяшомпол.

Закрепление концевых фрез. Концевые фрезы с коническим хвостовиком, размер конуса которого совпадает с размерами конусарасточки шпинделя, базируют на хвостовик и скрепляют шомполом. Это самый простойспособзакрепленияконцевойфрезынавертикально-фрезерном станке.

Если размер конуса хвостовика фрезы меньше размера конуса гнезда шпинделя, для крепления используют переходную втулку 2(рис. 4.3, *a*), размер внутреннего конуса которой совпадает с размером конуса хвостовика концевойфрезы *I*, аразмернаружногоконуса—сразмеромконусагнезда шпинделя *4*. Фрезабазируется наконическомхвостовикеизатягивается шомполом *5*, длячеговторцехвостовикаимеетсярезьбовоеотверстие.

Передача крутящего момента осуществляется через торцовую шпонку3, которая закреплена на торце шпинделя; паз переходной втулки совмещают с выступомшпонки.

Трудоемкую работу по закреплению с помощью шомпола крупных торцовых фрез на вертикально-фрезерных станках (консольных и бесконсольных) можно механизировать.

На рис. 4.4 представлено устройство, позволяющее механизировать крепление фрез на вертикально-фрезерном станке модели 6Н12. При использованииэтогоустройствафрезеровщикзакрепляетиосвобождает фрезуповоротомрукояткипневмокрана. Закрепляется фрезапружиной силой P=90к Н, аосвобождается—спомощью сжатоговоздуха.

Данноеустройствоработаетследующимобразом. Вконусный хвостовик 13 фрезыввернут переходник 12, который, всвоюочередь, завинчивают в втулку 11 таким образом, чтобы паз во фланце

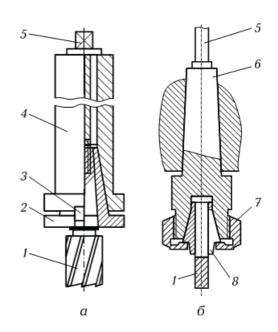


Рис. 4.3. Схемы установки и закреплениянавертикальнофрезерномстанке концевыхфрез:

a—сконическимхвостовиком; δ —сцилиндрическимхвостовиком; l—фреза; $2,\delta$ —переходныевтулки;3—торцоваяшпонка;4—шпиндель;5—шомпол; 7 — гайка; 8 — цанга

хвостовика фрезы располагался напротив шипа 15 на торце шпинделя. Поворотомрукояткипневмокрана (на рис. 4.4непо-казан)воздух выпускают изпневмоцилиндра2,иосвобожденнаяпружина1спомощьютяги10через втулку11затягиваетхвостовикфрезывгнездошпинделя.

Чтобы освободить фрезу, рукоятку пневмокрана следует перевести в положение пуска воз- духа. При этом поршень 3 под давлением сжатого воздухаопуститсявниз,сожметпружину,итяга 10, перемещаясьвниз,выведетхвостовикфрезыизгнездашпинделя.

Такое устройство устанавливаютнаверхнемторцешпиндельнойбабки станка. Пневмоцилиндр2 (вместескорпусом8) крепятвинтами 9. Стакан 6 навертываютнаверхнийконецшпинделястанка иконтрятдвумявинтами 7.

Фрезу с цилиндрическим хвостовиком (см. рис. 4.3, δ) обычно закрепляют цангой8впереходнойвтулке δ (илипатроне),которуюзатемхвостовиком

устанавливают в коническом отверстии шпинделя станка и закрепляют шомполом 5. Крепление фрезы в цанге 8 осуществляют завинчиванием гайки 7.

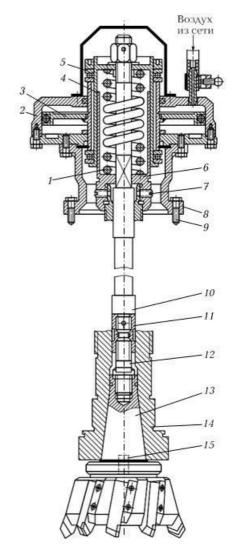


Рис.4.4. Устройстводлямеханизированногокрепленияфрез:

1—пружина;2—пневмоцилиндр;3— поршень;4—подвижнаявтулка;5— упорныйшарикоподшипник;6—стакан;7—винт;8—корпус;9—крепежный винт; 10—тяга; 11—втулка; 12—переходник;13 —хвостовикфрезы;14 — шпиндель станка;15 —шип

Закрепление насадных фрез. В зависимости от конструкции насадной торцовой фрезы ее установка может быть выполнена на продольной или торцовой шпонке.

На рис. 4.5, a показана концевая оправка с цилиндрической по-садочной поверхностью 4 дляустановкина продольной шпонке 5 торцовой насадной фрезы (рис. 4.5, δ).

В этом случае конический хвостовик 2 (см. рис. 4.5, a) оправки устанавливаютвконическоегнездошпинделястанка. Фрезунадеваютна цилиндрическуючастьоправкиизатягиваюткрепежнымвинтом(рис.4.5, a).

Крутящиймоментотшпинделянаоправкупередаетсячерезторцовую шпонку, вкоторую оправкавставляется пазом 3 (см. рис. 4.5, a).

Привыбореоправкинеобходимоучитывать, чтодляправорежущих фрез крепежный винтдолжениметь правуюрезь бу, адлялеворежущих — левую. Поскольку коническийх востовик концевых оправок центрируется в гнезде шпинделякрутым конусом (с конусностью?:

24),хвостовикоправкизатягиваютвгнездешпинделяшомполом,длячеговторц ехвостовика

оправкиимеетсярезьбовоеотверстие 1.

Для установки насадных фрез большого диаметра применяют оправки другой конструкции, которые крепят несколькими винта- ми по торцу шпинделя. Фреза в этом случае надевается на оправку конусным посадочным отверстием и крепится винтами к торцу оправки.

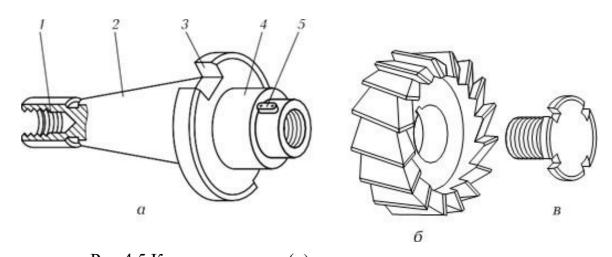


Рис.4.5.Концеваяоправка(a),торцовая насадная фреза (δ) и крепежныйвинт(ϵ): 1 — резьбовоеотверстие; 2 — конический хвостовик; 3 — паз; 4 — цилиндрическая посадочная поверхность; 5 —шпонка

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Какие конструкции фрез различают?
- 2. Что собой представляют цельные, составные и сборные фрезы?
- 3. Покакимпризнакамклассифицируютфрезы?
- 4. Какие типы фрез являются наиболее распространенными?
- 5. Что собой представляет режущий элемент фрезы?
- 6. Из каких материалов изготовляют режущую часть фрезы?
- 7. Какова последовательностьустановки и закрепления цилиндрической фрезы на горизонтально-фрезерном станке?
- 8. Для чего применяют шомполпр и закреплении дисковой фрезы в шпинделе горизонтально-фрезерного станка?
- 9. Можно ли механизировать закрепление фрез на вертикальнофрезерных станках?
- 10. Применяются ли насадные фрезы при работе на вертикально-фрезерных станках?
- 11. Как осуществляют установку и закрепление концевыхфрез на вертикально- фрезерных станках?